Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
Buildings ; 13(4):921, 2023.
Article in English | ProQuest Central | ID: covidwho-2295831

ABSTRACT

Fluctuating building occupancy during the COVID-19 pandemic contributed to poor water quality and safety conditions in building water distribution systems (BWDSs). Natural disasters, man-made events, or academic institutional calendars (i.e., semesters or holiday breaks) can disrupt building occupant water usage, which typically increases water age within a BWDS. High water age, in turn, is known to propagate poor water quality and safety conditions, which potentially exposes building occupants to waterborne pathogens (e.g., Legionella) associated with respiratory disease or hazardous chemicals (e.g., lead). Other influencing factors are green building design and municipal water supply changes. Regardless of the cause, an increasing number of water management policies require building owners to improve building water management practices. The present study developed a Water Quality and Safety Risk Assessment (WQSRA) tool to address gaps in building water management for academic institutions and school settings. The tool is intended to assist with future implementation of water management programs as the result of pending policies for the built environment. The WQSRA was modeled after water management practices created for controlling water contaminants in healthcare facilities. Yet, a novel WQSRA tool was adapted specifically for educational settings to allow building owners to evaluate risk from water hazards to determine an appropriate level of risk mitigation measures for implementation. An exemplar WQSRA tool is presented for safety, facility, industrial hygiene, and allied professionals to address current gaps in building water management programs. Academic institutions and school settings should examine the WQSRA tool and formulate an organization-specific policy to determine implementation before, during, and after building water-disruptive events associated with natural or man-made disasters.

2.
Agriculture ; 12(7):913, 2022.
Article in English | ProQuest Central | ID: covidwho-1963661

ABSTRACT

This study assessed problems associated with irrigation water provisions and the potential barriers to the adaptation of the interventions (soil moisture sensors, on-farm water storage facilities and the drip method) under rotational canal water distribution in Punjab, Pakistan. Three groups of stakeholders were individually surveyed during September–December 2020: (i) 72 farmers, (ii) 15 officials, and (iii) 14 academicians. We used descriptive statistical analysis, cross-tabulation and the Fisher test to explore the pattern of responses across the groups. The main problems in the canal water distribution system were expressed by the farmers as limited water allocation, while academicians were concerned mostly with inflexibility and officials indicated discussion among neighbors. According to the farmers’ responses, the conventional depth/interval of irrigation is flooding the field with water and observing the plants, indicating over-irrigation behavior. Moreover, the most important barriers in the adaptation of the interventions that were highly rated by the three groups were low awareness, lack of training and financial resources. Additionally, farmers’ education revealed a statistically significant influence on awareness of soil moisture sensors and water storage facilities, while large farm holders showed a positive relationship to conducting a joint experiment with scientists and farmers’ associations on part of their land to improve water use efficiency.

3.
Journal of Water Resources Planning and Management ; 148(8), 2022.
Article in English | ProQuest Central | ID: covidwho-1873601

ABSTRACT

Contamination events in water distribution systems (WDS) are emergencies that cause public health crises and require fast response by the responsible utility manager. Various models have been developed to explore the reactions of relevant stakeholders during a contamination event, including agent-based modeling. As the COVID-19 pandemic has changed the daily habits of communities around the globe, consumer water demands have changed dramatically. In this study, an agent-based modeling framework is developed to explore social dynamics and reactions of water consumers and a utility manager to a contamination event, while considering regular and pandemic demand scenarios. Utility manager agents use graph theory algorithms to place mobile sensor equipment and divide the network in sections that are endangered of being contaminated or cleared again for water consumption. The status of respective network nodes is communicated to consumer agents in real time, and consumer agents adjust their water demands accordingly. This sociotechnological framework is presented using the overview, design, and details protocol. The results comprise comparisons of reactions and demand adjustments of consumers to a water event during normal and pandemic times, while exploring new methods to predict the fate of a contaminant plume in the WDS.

4.
Sustainability ; 14(6):3692, 2022.
Article in English | ProQuest Central | ID: covidwho-1765920

ABSTRACT

Water distribution network (WDN) is a human-centered infrastructure that is indispensable for modern cities worldwide. In addition to optimizing the operation and management (O&M) of WDNs under the current state, water utilities should be able to manage uncertain and risk conditions for improving their O&M efficiency. Although the disintegration of large WDNs into permanent district metered areas (DMAs) is an O&M innovation based on water leakage monitoring and pressure management, its network redundancy and reliability diminish under anomalous conditions. Therefore, this study proposed a design and operation procedure to obtain optimal, self-adaptive DMA configurations for various plausible abnormal scenarios. The proposed method is based on multiscenario simulation and optimization, comprising two phases: (1) design of optimal DMA layout for each scenario using the pressure uniformity index to optimize the placement of flow meters and gate valves, and (2) dynamic transformation of the base DMA configuration into an adaptive DMA layout adapting to abnormal conditions and optimization of the locations and statuses of the control valves. Moreover, we used a real-world WDN to demonstrate the effectiveness of the proposed approach, and the obtained results revealed the efficiency and appropriate performance of the adaptive DMA layouts for sustainable adaptation of WDNs under anomalous conditions.

5.
Journal of Water Resources Planning and Management ; 148(6), 2022.
Article in English | ProQuest Central | ID: covidwho-1758457

ABSTRACT

Hydraulic models can provide efficient and cost-effective ways for water utilities to evaluate changes in operating conditions (e.g., population dynamics, disasters), thereby increasing system resiliency during crises. Unfortunately, model development remains out of reach for many utilities because of high software costs, data needs, or personnel requirements. This study seeks to classify hydraulic modeling data needs, identify success factors and challenges associated with model development, and determine whether modeling a subzone of a larger water distribution network can provide useful insights during a crisis, specifically the COVID-19 pandemic. At the pandemic onset, we began developing a hydraulic model of the water distribution system of the University of Texas at Austin campus—a subsystem of the water distribution network of Austin, Texas—to understand how spatiotemporal changes in water demands impacted system performance. We found that the completed model can offer useful insight into the impacts of demand changes within the modeled subsystem (e.g., potential locations of water stagnation). However, the data collection and processing challenges encountered (e.g., siloed collection efforts, lack of standardization, lengthy processing) reflect barriers to model development and use. The amount of time required to gather and process the necessary data shows that model development cannot occur during a time-sensitive crisis, likely rendering any insight too late for use. Here, we make recommendations to address data-related challenges and support utilities in incorporating hydraulic modeling into emergency planning.

6.
Water ; 14(5):786, 2022.
Article in English | ProQuest Central | ID: covidwho-1742774

ABSTRACT

The need for water supply companies to exercise control over the operating conditions of water supply networks has contributed to the development of a number of methods for their diagnosis. The diagnostics of technical infrastructure is a constantly developing field, and therefore, over the years, we have observed the development of various methods of diagnosing network operating conditions and their classification. The article presents, in a synthetic way, the division and review of the previously used methods of diagnosing the operating conditions of water supply networks. The authors also classified and assessed the usefulness of the methods of diagnosis in specific operating conditions. The review carried out by the authors shows that there is a need for research on the detection of operating conditions of water supply networks under the operating conditions of real systems. The results of our deep analysis allow for the understanding of the most important areas of research, as well as the existing worldwide trends in the development of methods for leak diagnosis and detection in water distribution networks. This review is a compendium of knowledge on the detection and diagnosis of water supply networks.

SELECTION OF CITATIONS
SEARCH DETAIL